Classification Errors in a Domain-Independent Assessment System
نویسندگان
چکیده
We present a domain-independent technique for assessing learners’ constructed responses. The system exceeds the accuracy of the majority class baseline by 15.4% and a lexical baseline by 5.9%. The emphasis of this paper is to provide an error analysis of performance, describing the types of errors committed, their frequency, and some issues in their resolution.
منابع مشابه
A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملA land covers classification system for environment assessment in semi-arid regions of Iran
Land degradation is a major danger which restricting different areas of Iran. Systematic description of the environmentfor detection of environmental changes and the human-related causes and responses is essential in land cover changestudy. Use of land cover data allow detection of where certain changes occur, what type of change, as well as how theland is changing. Existing systems for classif...
متن کاملFrequency domain analysis of transient flow in pipelines; application of the genetic programming to reduce the linearization errors
The transient flow analyzing by the frequency domain method (FDM) is computationally much faster than the method of characteristic (MOC) in the time domain. FDM needs no discretization in time and space, but requires the linearization of governing equations and boundary conditions. Hence, the FDM is only valid for small perturbations in which the system’s hydraulics is almost linear. In this st...
متن کاملارائه مدل ترکیبی شبکه های عصبی با بهره گیری از یادگیری جمعی به منظور ارزیابی ریسک اعتباری
Banking is a specific industry that deals with capital and risk for making profit. Credit risk as the most important risk, is an active research domain in financial risk management studies. In this paper a hybrid model for credit risk assessment which applies ensemble learning for credit granting decisions is designed. Combining clustering and classification techniques resulted in system improv...
متن کاملIdentification and Evaluation of Human Errors Using Human Factor Analysis and Classification System based on Fuzzy Hierarchy Theory: A Case Study in the Cement Industry
Introduction: Human factors studies have shown that about 80% of the root causes of major accidents affecting safety, the environment or ergonomics are related to human error. The purpose of this study was to identify human errors using the HFACS method and the FAHP theory in cement industry. Methods: The present study was a retrospective study carried out in the cement industry. At first, R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008